A backup plan for self-protection: S-methylation of holomycin biosynthetic intermediates in Streptomyces clavuligerus.

نویسندگان

  • Bo Li
  • Ry R Forseth
  • Albert A Bowers
  • Frank C Schroeder
  • Christopher T Walsh
چکیده

Biosynthesis of the dithiolopyrrolone antibiotic holomycin in Streptomyces clavuligerus involves the closure of a pair of enethiols to a cyclic disulfide. We have shown that the dithiol oxidase HlmI is responsible for the disulfide formation and this enzyme also plays a role in self-protection. In the present study, we examine how S. clavuligerus deals with the proposed toxic dithiol intermediates when hlmI is deleted. We used differential NMR spectroscopy and mass spectrometry to profile the metabolomes of hlmI deletion mutants along with the wild-type strain and a holomycin-overproducing strain. A number of metabolites unique to ΔhlmI strains were identified. In these metabolites the enethiols have been incapacitated by a combination of mono- and di-S-methylation. We also observed an intriguing dimeric thioether adduct in low quantities in the wild-type strain and at much higher levels in the ΔhlmI strains. The structures of these novel metabolites highlight the reactivity of the dihydrodithiolopyrrolone scaffold. Furthermore, bioassays suggest that modification of the enethiol warhead by S-alkylation provides a host strategy for detoxification, one that is shared amongst multiple species producing such bioactive disulfide natural products.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the gene cluster for the dithiolopyrrolone antibiotic holomycin in Streptomyces clavuligerus.

Streptomyces clavuligerus, an industrially important producer of clavulanate as well as cephem antibiotics, also produces the N-acylated dithiolopyrrolone antibiotic holomycin, a reported inhibitor of RNA synthesis. The genome sequence of S. clavuligerus ATCC 27064 was examined for a potential biosynthetic gene cluster, assuming that holomycin arises from some derivative of an L-Cys-L-Cys dipep...

متن کامل

Transcriptomic analysis of Streptomyces clavuligerus ΔccaR::tsr: effects of the cephamycin C-clavulanic acid cluster regulator CcaR on global regulation*

Streptomyces clavuligerus ATCC 27064 and S. clavuligerus ΔccaR::tsr cultures were grown in asparagine-starch medium, and samples were taken in the exponential and stationary growth phases. Transcriptomic analysis showed that the expression of 186 genes was altered in the ccaR-deleted mutant. These genes belong to the cephamycin C gene cluster, clavulanic acid gene cluster, clavams, holomycin, d...

متن کامل

Two oligopeptide-permease-encoding genes in the clavulanic acid cluster of Streptomyces clavuligerus are essential for production of the beta-lactamase inhibitor.

orf7 (oppA1) and orf15 (oppA2) are located 8 kb apart in the clavulanic acid gene cluster of Streptomyces clavuligerus and encode proteins which are 48.0% identical. These proteins show sequence similarity to periplasmic oligopeptide-binding proteins. Mutant S. clavuligerus oppA1::acc, disrupted in oppA1, lacks clavulanic acid production. Clavulanic acid production is restored by transformation...

متن کامل

Exploiting Adaptive Laboratory Evolution of Streptomyces clavuligerus for Antibiotic Discovery and Overproduction

Adaptation is normally viewed as the enemy of the antibiotic discovery and development process because adaptation among pathogens to antibiotic exposure leads to resistance. We present a method here that, in contrast, exploits the power of adaptation among antibiotic producers to accelerate the discovery of antibiotics. A competition-based adaptive laboratory evolution scheme is presented where...

متن کامل

A rhodanese‐like protein is highly overrepresented in the mutant S. clavuligerus oppA2::aph: effect on holomycin and other secondary metabolites production

A protein highly overrepresented in the proteome of Streptomyces clavuligerus oppA2::aph was characterized by MS/MS as a rhodanese-like enzyme. The rhlA gene, encoding this protein, was deleted from strains S. clavuligerus ATCC 27064 and S. clavuligerus oppA2::aph to characterized the RhlA enzyme activity, growth on different sulfur sources and antibiotic production by the mutants. Whereas tota...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chembiochem : a European journal of chemical biology

دوره 13 17  شماره 

صفحات  -

تاریخ انتشار 2012